A. Chemical measurements part 1 - Chemical changes and conservation of mass

1. A piece of magnesium was heated in a crucible.

a) Write a balance equation to show how the magnesium reacts with oxygen. (2) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$ (1 mark for formulae and 1 mark for balancing)
b) The mass of the crucible at the start of the reaction was 0.34 g , but 0.56 g at the end. Explain why the mass increased. (2)
Oxygen from the air / atmosphere (1) has bonded / reacted with the magnesium (1)
c) The student heated the crucible at the end of the reaction. What could the student do to make sure the reaction is complete? (2)
Reweigh the crucible (1) if the two masses are the same, the reaction is complete (1)
d) Another student heated magnesium carbonate in a similar crucible, with the lid off. The reaction is shown below:

$$
\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Use the reaction to explain whether the mass would increase or decrease. Explain your answer. (3) The mass will decrease (1) carbon dioxide / as gas (is produced or given off (1) which can escape (1)

B. Chemical measurements part 2 - Relative formula mass

1. Calculate the relative formula mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. (1)

106 (1)
2. Calculate the relative atomic mass of Iron (with $5.8 \%{ }^{54} \mathrm{Fe}, 91.8 \%{ }^{56} \mathrm{Fe}, 2.1 \%{ }^{57} \mathrm{Fe}$ and $0.3 \%{ }^{59} \mathrm{Fe}$). (2) Ar of $\mathrm{Fe}=(5.8 \times 54)+(91.8 \times 56)+(2.1 \times 57)+(0.3 \times 58) / 100=5591.1 / 100=55.9$

C. Calculations part 1 - Moles/Quantities/Balancing and Limiting factors (HT)

1. How many moles of sulfur atoms are there in:
a) 9.8 grams of sulfur? (1)
0.3 moles (1)
b) 16 tonnes of sulfur? (where 1 tonne $=1000 \mathrm{~kg}$) (1)

500000 moles (1)
2. What is the mass of:
a) 0.04 moles of hydrogen H_{2} ? (1) $0.04 \times 2(1 \times 2)=0.08 g(1)$
b) 0.6 moles of sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$? (2)

$$
23+14+(16 \times 3)=85(1)
$$

$$
0.6 x 85=51 \mathrm{~g}(1)
$$

3. When calcium reacts with water it forms a solution of calcium hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$ and hydrogen gas.
a) Write a balanced symbol equation, including the state symbols to show this equation. (3)
$\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
1 mark for symbols, 1 mark for balancing and 1 mark for state symbols
b) Calculate how much calcium must be added to an excess of water to produce 3.7 g of calcium hydroxide (2)
2.0 g (2)
4. What mass of sodium chloride is produced when 5.3 g of sodium carbonate reacts with excess dilute hydrochloric acid? (3)

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Mr of sodium carbonate $=(23 \times 2)+12+(16 \times 3)=106$ [1]
Mr of sodium chloride $=23+35.5=58.5 \times 2=117$ [1]
Ratio of sodium chloride to sodium carbonate 117/106
Mass of sodium chloride $5.3 \times 117 / 106=5.85 \mathrm{~g}$ [1]
5. 0.010 moles of $\mathrm{C}_{4} \mathrm{H}_{10}$ reacts with oxygen as in the following equation:

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

1.76 g of carbon dioxide and 0.90 of water are produced.

Use this information to work out the balancing numbers for carbon dioxide and water. (4)
$4 \mathrm{CO}_{2}$ and $5 \mathrm{H}_{2} \mathrm{O}$
Correct answer with or without working scores 4 marks
If the answer is incorrect award up to 3 marks for the working
$\mathrm{Mr} \mathrm{CO}_{2}=44$ and $\mathrm{Mr} \mathrm{H}_{2} \mathrm{O}=18$ (1)
moles $\mathrm{CO}_{2}=0.040$ (1)
moles $\mathrm{H}_{2} \mathrm{O}=0.050$ (1)
6. 84 tonnes of nitrogen were mixed with 30 tonnes of hydrogen in the following equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a) Calculate the number of moles of nitrogen and hydrogen and calculate which reactant is the
limiting factor. (3)
$3,000,000$ moles of nitrogen (1)
$15,000,000$ moles of hydrogen (1)
(using the 1:3 ratio of $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$) we need 5,000,000 moles of N_{2} therefore it is the limiting reactant (1)
b) Calculate the maximum mass of ammonia that can be produced from 42 tonnes of nitrogen. (3) 51 tonnes
correct answer with or without working scores 3 marks
if the answer is incorrect award up to 2 marks for the working
$3,000,000$ moles of N_{2} will give 6,000,000 moles of NH3
M_{r} NH3 $=17$

D. Calculations part 2 - Concentrations of solutions

1. A technician made up a solution of sodium hydroxide by placing 5.00 g of solid sodium hydroxide in a flask and adding $100 \mathrm{~cm}^{3}$ of water. She placed in the stopper and shook until the reaction had stopped. What was the concentration of the solution in $\mathrm{g} / \mathrm{dm}^{3}$? (1)
$50 \mathrm{~g} / \mathrm{dm}^{3}$ [1]
2. A solution of copper chloride has a concentration of $300 \mathrm{~g} / \mathrm{dm}^{3}$. What is the mass of copper chloride in $500 \mathrm{~cm}^{3}$ of the solution? (2)
$500 / 1000=0.5 \mathrm{~g} / \mathrm{dm}^{3}(1)$
$300 \mathrm{~g} / \mathrm{dm}^{3} \times 0.5=150 \mathrm{~g}$ (1)
3. Higher:

Explain how the mass of a solute and the volume of water effect the concentration of a solution. (2) A greater mass of solute in a certain volume of water \rightarrow more concentrated solution, [1] greater volume of water for a certain mass of solute \rightarrow less concentrated solution [1]

CHEMISTRY ONLY

E. Quantities part 1 - Percentage yield and atom economy

1. Give two possible reasons for the actual yield in a reaction being less that the maximum theoretical yield. (2)
ANY TWO OF:
Some of the product may have been lost when it was separated from the reaction mixture,
The reactants may have reacted in a different way to the expected reaction,
The reaction may be reversible,
Not all the reactants reacted.
2. Magnesium is burnt in air. The theoretical yield of magnesium oxide is 5 g , but only 4.5 g is produced.

What is the percentage yield? (1)
90\%
3. Lead nitrate and potassium iodide solutions are mixed to make solid lead iodide. The solid is then separated using the following equipment:

Suggest why the actual yield is less than the theoretical yield. (1)
Some of the product might have stuck to the filter paper/may have been lost (1)

4. Higher:

100 g of magnesium carbonate is heated. It decomposes to make magnesium oxide and carbon dioxide. Calculate the theoretical yield of magnesium oxide made. (2)

$$
\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}
$$

M_{r} of $\mathrm{MgCO}_{3}=24+12+(16 \times 3)=84$
M_{r} of $\mathrm{MgO}=24+16=40$
84 g of MgCO_{3} would make 40 g of MgO (1)
So 200 g would make 47.6 g (1)
5. Calculate the atom economy for making hydrogen from the following reaction: (1)

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

$4 / 48 \times 100=8.3 \%$
6. Suggest why industrial processes need as high an atom economy as possible? (2)

ANY TWO OF:

Reduces the production of unwanted products, Makes the process more sustainable, So that they can sell it to make money.

F. Quantities part 2 - Moles of solutions and gases (HT)

1. What is the concentration of a solution that has 0.25 mol of solute in $135 \mathrm{~cm}^{3}$ of solution? (1)

Concentration $=$ number of moles \div volume $=0.25 \mathrm{~mol} \div 0.135 \mathrm{dm}^{3}=1.85 \mathrm{~mol} / \mathrm{dm}^{3}$ (1)
2. How many moles of copper sulfate are there in $40 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ solution? (1)

Number of moles $=0.1 \mathrm{~mol} / \mathrm{dm}^{3} \times 0.040 \mathrm{dm}^{3}=0.0040 \mathrm{~mol} / \mathrm{dm}^{3}(1)$
3. Calculate the concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ of a solution that has 2 mol of an alkali in $250 \mathrm{~cm}^{3}$ of solution.(2) Concentration $=$ number of moles \div volume $=2 \mathrm{~mol} \div 0.250 \mathrm{dm}^{3}(1)=8 \mathrm{~mol} / \mathrm{dm}^{3}(1)$
4. What mass of sodium fluoride (NaF) is in $250 \mathrm{~cm}^{3}$ of a $2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution? (2)

Mass of 1 mole of NaF = $23+19=42 \mathrm{~g}$
In $1 \mathrm{dm}^{3}$ of a $2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution, there are (42×2) = 84 g of NaF (1)
In $250 \mathrm{~cm}^{3}$, there are $84 \mathrm{~g} \times\left(250 \mathrm{~cm}^{3} \div 1000 \mathrm{~cm}^{3}\right)=21 \mathrm{~g}$ (1)
5. It takes $27.00 \mathrm{~cm}^{3}$ of hydrochloric acid to neutralise $25.00 \mathrm{am}^{3}$ of sodium hydroxide at a concentration on $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$. Calculate the concentration of hydrochloric acid in $\mathrm{g} / \mathrm{cm}^{3}$. (4)
Number of moles of sodium hydroxide $=$ concentration \times volume

$$
=1 \mathrm{~mol} / \mathrm{dm}^{3} \times(25 \div 1000) \mathrm{dm}^{3}=0.025 \mathrm{~mol}(1)
$$

The equation for the reaction shows that 1 mole of sodium hydroxide reacts with 1 mole of hydrochloric acid. So there is $\mathbf{0 . 0 2 5} \mathbf{~ m o l}$ of $\mathbf{H C l}$ in $27 \mathrm{~cm}^{3}$ of solution.
So the concentration of HCl in $\mathrm{mol} / \mathrm{dm}^{3}=$ number of moles \div volume

$$
=0.025 \mathrm{~mol} \div(27 \div 1000) \mathrm{dm}^{3}=0.925 \mathrm{~mol} / \mathrm{dm}^{3}(1)
$$

The mass of 1 mole of HCl is $(1+35.5)=36.5 \mathrm{~g}(1)$
So the concentration in $\mathrm{g} / \mathrm{dm}^{3}=36.5 \mathrm{~g} / \mathrm{mol} \times 0.925 \mathrm{~mol} / \mathrm{dm}^{3}=33.8 \mathrm{~g} / \mathrm{dm}^{3}(1)$
6. Calculate the volume of 0.7 mol of carbon dioxide gas at RTP. (1)
$0.7 \times 24=16.8 \mathrm{dm}^{3}(1)$
7. What is the volume 12.3 g of butane gas $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ at RTP? (3)

```
Mr = 58 (1)
Moles = 12.3/58 = 0.21 mol (1)
Volume = 0.21\times24=5.09 dm}\mp@subsup{}{}{3}(1
```

